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NOMENCLATURE

plate modal amplitude

Am/L

speed of sound

see Eq. (2)

see Eq. (5), et. seq.

cylinder length

U/a, Mach number

pressure amplitude

P cos ne;.also Laplace transform variable
cylinder radius

radial coordinate

tU
L

time
free stream air velocity

plate deflection

streamwise coordinate

Fourier transform variable =

1/2
R/L [M2<ia + 5)2 +3%]

angular polar coordinate
density

dummy s

velocity potenzial amplitude

~

¢ cos n6, velocity potential



wm(x) - streamwise mode shape
Superscripts
* -

Laplace transform with respect to time

1-

Fourier transform with respect to streamwise coordinate

« = Qderivative with respect to time-like argument

-
1

derivative with respect to space-like argument

Subscripts
R - real ﬁart

I - imaginary part



1. INTRODUCTION

There are two rather closely related problems involving the
motion of a flexible cylianiﬁal shell in a fluid flow which are
of current engineering interest. These are the stability of the
fluid shell system (shell or panel flutter) and the respomnse of
the system to "external" forces, e.g., response to pressure fluc-
tuations in a turbulent boundary layer. In either case, the determina-
tion of the aerodynamic forces due to the shell motion is of interest.
Herétofore only the special case of sinusoidal or simple harmonié
motion has been treated in a series of papers by Widnall and the
au£hor [1-3] for both external and internal flow. This work was,
in turn, based on earlier studigs by Randall [4] and Stearman [5].
In the present work the more general case of arbitrary time (as well
as spatial) dependence of the shell motion is considered. The approach
.uéed is analogous to that previously employed for the flat plate [6].

Only the external flow case is treated.



2. PROBLEM FORMULATION AND SOLUTION

A flexible cylindrical shell of finite length undergoing arbi-.
trary temporal and spatial motion is éonsidered. There is an external,
ihviscid, irrotational flow parallel to the, axis of the cylinder; the
object is to determine the fluid (aerodynamic) forces acting on the shell;
In order to make the problem mathematically tractable for subsonic fiéw,
M < 1, the finite length flexible shell is considered to be a portion of
an infinitely long cylinder, the remainder of which is rigid. TFor super-
sonic flow, M > 1, the solution is not as restrictive since the flow béhind
the flexible shell cannot éffect the flow over it, and that in front of
the shell need only be uniform and parallel as it arrives at the flexible
shell.

Within the framework of linear theory, the boundary value~initial
value problem may be stated as follows: We seek a solution to the partial

differential equation for the velocity potential ¢

2 1.9 . ..8.2 _
V- aZ [ac + U ax] ¢ = 0 - )

subject to the boundary condition

-gi =U%§-+-§—‘§EF(x,t) cos nd
T r=Rr | on flexible shell

-0 S ¢)
on rigid cylinder

and also an appropriate boundary condition as r + =, The Fourier decom-
position in the circumferential variable § may be appropriately summed

to treat an arbitrary variation of shell deflection w with 8.




This problem will be treated by the transform calculus, employing

a Laplace transform with respect to time and a Fourier transform with

respect to the spatial variable x. Let
o e (x,r,68,t) = o(x,r,t) cos nb

and define

(-]
* -
o (x,r;p) = f e pt@(x,r,t)dt
. 3
and

* 2 - :

) *(r;a,p) = f e iax&?x,r;p)dx
- OO

Equations (1) and (2) become (assuming that ¢ = %% =0att=20)
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Solving Eq., (3) subject to (4) gives

K (g)
* *
ot _ =T
]
cKn(c)
where
v, 12
r = RIL MPEaD)? + 321
- - oL
a = U»L’ P = Eﬁ_

(The square root of ¢ is to be chosen such that the condition of finite-
ness or radiation is satisfied at infinity. We will not need to do this

explicitly.) Using the convolution and inversion theorems we have

of o =R [H(s-0)F (o)do (5)
0
where
Fi(o) = [ F(g,®)e +%dx
and
ie K () =, _
H(s=-g) = Zii L ep(S o)dp
-ie= K2 (2)
x =x/L, s =

L -
Formally the inversion may now be made to the spatial domain. However,
instead we proceed with the calculation of the Fourier transform of the

fluid forces. The fluid pressure is related to the velocity potential by

the Bernoulli formula,



p=-p["‘¢'+U‘i] (6)

From Eqs. (5) and (6) one may compute the Fourier transform of the pres-

sure amplitude as

l_ = o 2 mF () + [[H(s-0) + H(s-0)]  Fl(a)do )
0

By noting that

K _(z)
- -1
H(0) = lim p ? = R/L M
pre K0

we see the well-known result that at s = 0+ .the pressure is that given
by "piston theory" [7] Again a formal inversion into the spatial domain
may be made if desired.

For the usual\applications, the forces of interest are the "generalized

- aerodynamic forxces' rather than the pressure itself. If

F(x,t) = ] A_(©)y_(x) ‘ (8)
m

then the (nondimensional) generalized force, er, is defined as

L .
tg Py (x)dx (9)

where Pm is the pressure amplitude due to

F = a,(09,00)



A considerable economy of effort may be achieved by performing the
integral over x in Eq. (9) before inverting the Fourier transform.

Having done this, er may be written
Q = am(s)Smr + a_ D

mr mr

S
+£ a O)H_(s0)®

]
+f ;m(c)Imr(s-o)dc

0
where
s =Llf (DD -
mr M 5 %n lpr &
1 1 ’
Dur i g ¥, (E)Y_(B)dE
B oz-RLl ] 50, + Bs-0,m)] G (da
wr - L 27 ’ o nr
I =- RL }o [i'&H(é— a) + H(s-0,a)]6__(a)da
wr - L 27 g»a ? mr
1 - 1 -
G . = £ y (E)e iagda{ wr(i)elagdﬁ

(10)

In the derivation it has been assumed that wm(O) = wm(l) = 0. For the

commonly used wm, S

mr mr

s D _, and Gmr may be integrated analytically;

Hmr and Imr must be determined by numerical integration. In order to do

this, it will be necessary to develop H in a more explicit form.

~



Development of H

Recall
ie K (z) =
.1 n p(s-0) ,-
H(s=0) = —— f -— e dp
2mi _y ., &K (2)
Definel

e = R/L M[p + ia]
;hen

CZ = €2 + (R/LE)2

and, using a well-known inversion formula [8],

H(s—0) = L -1a(s~0) {=dem

RM

eL K (%)
2ni f (S-G) " de}

- u) '
i cKn(c)

Now Randall has evaluated the fcllowing functions

iw Kn(e)

Ve - - | gy e
n

an o -

(12)

Using another known inversion formula, ([8], pg. 227, No. 5) H may be

written in terms of the Randall functions, V.

-L -ia a a L ,2 2.1/2
H(s) = 2% 1% v& ﬁ{ 1,k (22 au)

(13)

The above evaluation of H follows very closely a similar calculation of

Stearman [5] who treated the problem of a harmonically oscillating cylinder

by using a Laplace transform with respect to x. It turns out that his

~

procedure is much more conveniently employed with respect to the time

‘variable, as indicated here.



The Randall functions have several desirable properties among

which are

1. They are real; H, on the other hand, is complex by virtue

of the complex exponential e %8,

2. V only depends on a single argument and one parameter, n.
See Eq. (12).

3. V has been tabulated for n = 0 - 10. For the present work,
its derivative has also been tabulated using the compufation procedure
suggested‘by Randall [4].

’

Other interesting properties of V are

K (e)
4, V@) = lin {~o———1 =1
Lin & 76
Similarly V(0) = ~.5 for .all n
-K (e)
5. V(w) lim { K (E)} =0

g0
Similarly V(=) =

6. [ V(s)ds = -1 from 4 and 5

Y]
o i (e)
7. f V(s)ds =,El— f %‘ eK'(e)} [e - P8 ]de
0 -1 s s=
-K (e) -K (&)
= iig { K ( )} ilm { K ( )} = l/n

This last property combined with the fact that V decays with its argu-
ment more rapidly as n increases gives Va pseudo delta function behavior

for large n (or large L/R).



Now consider ﬁ and, more specifically, ioH + ﬁ which we need for

H _ and Imr' From Eq. (13)

nr
13H(s) + f(s) = L5 e - Lyl g 4 wlci—s
‘ RM
Lo [ ,aue L ,2 21/2 s

It will be noted that the last term contains an integrable square root

singularity as u >~ s. For numerical work, it is desirable to remove

this by an obvious change of variable, viz.,

R() 2 13(s) + fe) = L S R ik 0 + Sn)

Ry ©
L a o 2,1/2 « L s
fEE R Pk ——
RM‘Z “I'M RM
0 . (s2-u2)1/2 (15)
J. (s)

Note that lim
s->0

is finite,
Finally, using Eq. (15) and noting the even and odd properties of

G__ and K with respect to &, H _ and I may be written
mr mr mr

11 - - T
H (s) = -3 f afG sin as - G cos as]T(a)da
mr M2 0 er mrI’

11 - — =y =
Imr(s) = - ;‘;5 { [Ger cos as + GmrI sin as]T(a)da

where
R T
T(a) = aJl(M) L/RV (R M)

-— N -

+L/R 2 f.rl[\{(2 2

l/Z]V s

) (23] —2—— 4y
RN 2] 2172
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For L/R - 0, T(a) ~ aJl(%fﬁ and we recover the result for a two—dimensional
flat plate [6]. Hence the above form will be termed the two-dimensional
approach.,

Hmr and Imr are "admittance functions" which may be evaluated once

and for all.

Slender Body Approach

There is an alternate formulation which is of some physical and
mathematical significance which we briefly consider here. By inter-

changing the convolution argument, Eq. (7) may be written

S
p" = —ou 2 FTO)H(s) + [ [FT(s~0) + 13F (s-0) JH(0) do} (16)

0

Proceeding as before and omitting details, er may be written as

er = }_1; {‘am(O)er(S) + ;m(O)Ymr(s)

s
+ ém(c)Ymr(s—a)dG
0

)
+ 2 f ém(o)er(s—o)da
0

S
+ [ a (02 _(s-0)da}
0

where



i1

-1 = L= - - =
er(s) =3 f a[Gmr sin as Gmr cos as]Tl(a)da
o "R 1
SL e+ ¢ sin 3s]T.(3)da
Ymr(s) =< f [Gmr cos as + Gmr sin as]Tl(a)da
0 R I
L 3 n 31T, () ds
Zmr(s) = -7 /a7 nr COS 08 + Gmr sin as]Tl(a)da
0 R I
and
—-— S -
= =ylks _& auyor Lo 2 2y1/2
One may show that
xmr 1 1
— = = = '
o @ =5 =% { v ' (E)v (8)dg
Y 1 1
mr (0) = Dy, = E'g V() () dg

hence at s = 0 the results are still those of "piston theory". Also

sy Z are

as n becomes large or L/R increases (for n # 0) the X , Y
. mr® “mr’® mr

pseudo delta functions so that

B

R
., 7L

mr

1
{8 (s) {wm(e)wr(z)ds o
1

+ 2 ém(s) { v ' (©)y_(E)dE

1
+ a (s) { vy (©)v (B)de}

This is the "slender body" limit which has been previously discussed
for simple harmonic motion [1-3] generalized to arbitrary time-dependent

motion.
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3. DISCUSSION

Perhaps a brief word is in order with regard to the mqtivation
fof the manner in which the several integrations were carried out.
The object, of course, is to minimize the amount of numerical work
requirgd. With the present solution, using either the two-dimensional
or slender body approach, a double numerical integration is required.
First either T or '1'l is evaluated and then Hmr and Imr or er, Ymr’
and Zmr are calculateq. Between the two options, two-dimensional van
slender body approach, there is little to choose, in generaly though
as one would expectAfor small L/R, the two-dimensional approach is
somewhat more éoﬁveniént while for L/R large; the converse is true.

There are at least two other distinct approaches to the problem
which are worthy of mention.

» (i) A solution is available for simple harmonic motion [1-3]. In
principle, this solution could be used ﬁo obtain the arbitrary time-depen-
dent solution by a simple Fourier superposition over all frequencies.
Preliminary investigation of this procedure suggested it is less accurate
and/or efficient than the method used here.

(11) An integral form can be derived expressing ¢ or P in terms of the
distribution of F over the shell from which ¢ or P could be evaluated Sy
a numerical quadrature [7]. This approach is commonly used for oscillating
lifting surfaces. However, it is less efficient than the transform approach
when F is known everywhere, i.e., one has an ordinary rather than a mixed

~

boundary value problem.
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4, NUMERICAL RESULTS

Representative results will be presented for a family of shell |

deformations,

wm(iz) = sin mn§ m=1;2,...

The time dependence will be taken as a unit step function,

1]
=

am(s) for s > 0

=0 for s < 0

In Figs. 1 and 2 are presented results for Qll and le for M = 1.414,
L/R = 2 and various n. In Fig. 3 and 4, results are shown for L/R = 2,
n =0, various M and in Fig. 5 and 6 for L/R = 2, n = 10, various M.
These data have a number of interesting features among which are:

(i) The s = 0+ results are those given by the piston theory [7]
and are independent of L/R and a.

(i1) For supersonic flow, the fluid has a finite memory of duration
M/ (M-1) and thus for s > M/(M-1) the values of er do not change.

(iii) As n (and L/R) increase the generalized forces reach their
asymptotic (large s) values more quickly. For large n (and large L/R
for n # 0) the aerodynamic forces are of the "slender body" type.

(iv) Conversely, for small n (ané L/R) the aerodynamic forces are
nearly two-dimensional.
(v) Forn=0, M= 1.0, the aerodynamic forces become indefinitely
large as s + ®, For n # 0, the aerodynamic forces remain finite and, for

L/R # 0, approach the sleander body values.
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Finally, it should be emphasized that although the numerical
results presented here are for the technologically important case
of supersonic flow, the solution is equally valid and efficient for

subsonic flow.
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